You are given a 2D integer array triplets, where triplets[i] = [ai, bi, ci] describes the ith triplet. You are also given an integer array target = [x, y, z] that describes the target triplet.
To form the target triplet, you can perform the following operation on triplets any number of times (possibly zero):
i and j (i != j) and update triplets[j] to become [max(ai, aj), max(bi, bj), max(ci, cj)].For example, if triplets[i] = [2, 5, 3] and triplets[j] = [1, 7, 5], triplets[j] will be updated to [max(2, 1), max(5, 7), max(3, 5)] = [2, 7, 5].
Return true if it is possible to obtain the target triplet [x, y, z] as an element of triplets, or false otherwise.
Input: triplets = [[2,5,3],[1,8,4],[1,7,5]], target = [2,7,5]
Output: true
Explanation: Perform the following operations:
- Choose the first and last triplets [[2,5,3],[1,8,4],[1,7,5]]. Update the last triplet to be [max(2,1), max(5,7), max(3,5)] = [2,7,5]. triplets = [[2,5,3],[1,8,4],[2,7,5]]
The target triplet [2,7,5] is now an element of triplets.
Input: triplets = [[3,4,5],[4,5,6]], target = [3,2,5]
Output: false
Explanation: It is impossible to have [3,2,5] as an element because there is no 2 in any of the triplets.
Input: triplets = [[2,5,3],[2,3,4],[1,2,5],[5,2,3]], target = [5,5,5]
Output: true
Explanation: Perform the following operations:
- Choose the first and third triplets [[2,5,3],[2,3,4],[1,2,5],[5,2,3]]. Update the third triplet to be [max(2,1), max(5,2), max(3,5)] = [2,5,5]. triplets = [[2,5,3],[2,3,4],[2,5,5],[5,2,3]].
- Choose the third and fourth triplets [[2,5,3],[2,3,4],[2,5,5],[5,2,3]]. Update the fourth triplet to be [max(2,5), max(5,2), max(5,3)] = [5,5,5]. triplets = [[2,5,3],[2,3,4],[2,5,5],[5,5,5]].
The target triplet [5,5,5] is now an element of triplets.
1 <= triplets.length <= 10^5triplets[i].length == target.length == 31 <= ai, bi, ci, x, y, z <= 1000This problem can be solved using a greedy approach:
Since we can only take the maximum of values when merging triplets, we can never decrease any value. If a triplet has any value greater than the corresponding target value, we can never use it (as it would make the result exceed the target).
We don't need to actually perform the merging operations. We just need to check if:
triplet[0] == target[0] (and no value exceeds target)triplet[1] == target[1] (and no value exceeds target)triplet[2] == target[2] (and no value exceeds target)These can be from the same or different triplets - it doesn't matter!
class Solution {
public boolean mergeTriplets(int[][] triplets, int[] target) {
boolean[] canAchieve = new boolean[3];
for (int[] triplet : triplets) {
// Skip if any value exceeds target
if (triplet[0] > target[0] ||
triplet[1] > target[1] ||
triplet[2] > target[2]) {
continue;
}
// Mark positions that match target
if (triplet[0] == target[0]) canAchieve[0] = true;
if (triplet[1] == target[1]) canAchieve[1] = true;
if (triplet[2] == target[2]) canAchieve[2] = true;
}
return canAchieve[0] && canAchieve[1] && canAchieve[2];
}
}
def mergeTriplets(triplets: List[List[int]], target: List[int]) -> bool:
can_achieve = [False, False, False]
for triplet in triplets:
# Skip if any value exceeds target
if (triplet[0] > target[0] or
triplet[1] > target[1] or
triplet[2] > target[2]):
continue
# Mark positions that match target
if triplet[0] == target[0]: can_achieve[0] = True
if triplet[1] == target[1]: can_achieve[1] = True
if triplet[2] == target[2]: can_achieve[2] = True
return all(can_achieve)